73 const UInt_t altrocfg2,
const int event,
const int col,
const int row )
81 for(
int i=0; i < nsize; i++ )
107 if(row >= 0 && col >= 0 )
121 for(
int i=0; i < nsize; i++ )
130 if(
fMon1[i].GetAmp() > 50 &&
fMon2[i].GetAmp() > 50 )
148 TFile *
f =
new TFile(
"comparison2.root",
"recreate");
161 for(
int i=0; i < nsize; i++ )
205 Int_t nsize = analyzers.size();
206 for(
int i=0; i < nsize; i++ )
212 sprintf(tmpname,
"z(col)%d_x(row)%d_amplitude_%s;Amplitude/ADC counts;Counts", col, row, analyzers.at(i)->GetAlgoAbbr() );
213 fAmpHistograms[i][col][row] =
new TH1D(tmpname, tmpname, 1024, 0, 1023 );
217 sprintf(tmpname,
"%s_amplitude_vs_event_row%d_col%d;Event;Amplitude/ADC counts", analyzers.at(i)->GetAlgoAbbr(),
fMonRow1,
fMonCol1 );
220 sprintf(tmpname,
"%s_tof_vs_event_row%d_col%d;Event;Amplitude/ADC counts", analyzers.at(i)->GetAlgoAbbr(),
fMonRow1,
fMonCol1 );
223 fTofVsEvent[i]=
new TH2D(tmpname, tmpname, 8000, 0, 7999, 2000, 1000, 4000);
226 sprintf(tmpname,
"%s_vs_%s_ampltude; Amplitude_{%s}/ADC counts; Amplitude_{%s}/ADC counts", ref->
GetAlgoAbbr(),
227 analyzers.at(i)->GetAlgoAbbr(), ref->
GetAlgoAbbr(), analyzers.at(i)->GetAlgoAbbr() );
229 sprintf(tmpname,
"%s_vs_%s_tof; tof_{%s}/ns; tof_{%s}/ns", ref->
GetAlgoAbbr(), analyzers.at(i)->GetAlgoAbbr(), ref->
GetAlgoAbbr(), analyzers.at(i)->GetAlgoAbbr() );
230 fRefTofVsAnalyzers[i] =
new TH2D(tmpname, tmpname, 500, 2000, 4999, 500, 2000, 4999 );
231 sprintf( tmpname,
"%s-%s amplitude;counts;A_{%s} - A_{%s}", ref->
GetAlgoAbbr(),
232 analyzers.at(i)->GetAlgoAbbr(), ref->
GetAlgoAbbr(), analyzers.at(i)->GetAlgoAbbr());
233 fAmpDiff[i] =
new TH1D(tmpname, tmpname, 100, -10, 10 );
234 sprintf( tmpname,
"%s-%s tof;counts;A_{%s} - A_{%s}", ref->
GetAlgoAbbr(),
235 analyzers.at(i)->GetAlgoAbbr(), ref->
GetAlgoAbbr(), analyzers.at(i)->GetAlgoAbbr());
236 fTofDiff[i] =
new TH1D(tmpname, tmpname, 1000, -5000, 5000 );
237 sprintf( tmpname,
"%s Differential tof resolution (%d, %d) vs (%d, %d);#sigma_{tof}^{%s}/ns;Counts", analyzers.at(i)->GetAlgoAbbr(),
fMonCol1,
fMonRow1,
fMonCol2,
fMonRow2,
238 analyzers.at(i)->GetAlgoAbbr() );
240 sprintf( tmpname,
"%s Absolute tof distribution (%d, %d);#sigma_{tof}^{%s}/ns;Counts", analyzers.at(i)->GetAlgoAbbr(),
fMonCol1,
fMonRow1, analyzers.at(i)->GetAlgoAbbr() );
Raw data fitting: crude fit.
Base class for extraction of signal amplitude and peak position.
TH1D * fTofResDifferential[NANALYZERS]
Differntial tof resolution.
Raw data fitting: special fast fit.
std::vector< AliCaloRawAnalyzer * > fRawAnalyzers
Raw analyzers.
AliCaloRawAnalyzer * fReferenceAnalyzer
Reference analyzer.
TH1D * fTofResAbsolute[NANALYZERS]
Differntial tof resolution.
AliCaloFitResults fMon1[NANALYZERS]
results for tower 1
TH2D * fRefAmpVsAnalyzers[NANALYZERS]
Amplidue from give analyzer vs reference.
Container class to hold results from fitting.
Raw data fitting: Neural network.
TH2D * fTofVsEvent[NANALYZERS]
Tof vs event number.
int fMonRow1
row index, for tower 1
const char * GetAlgoAbbr() const
void Evaluate(const std::vector< AliCaloBunchInfo > &bunchvector, const UInt_t altrocfg1, const UInt_t altrocfg2, const int event, const int col, const int row)
int fMonCol1
column index, for tower 1
virtual AliCaloFitResults Evaluate(const std::vector< AliCaloBunchInfo > &, UInt_t, UInt_t)=0
TH2D * fRefTofVsAnalyzers[NANALYZERS]
Amplidue from give analyzer vs reference.
AliCaloRawAnalyzerComparison()
Raw data fitting: standard TMinuit fit.
int fMonCol2
column index, for tower 2
void InitHistograms(std::vector< AliCaloRawAnalyzer * > analyzers, AliCaloRawAnalyzer *ref)
TH1D * fAmpHistograms[NANALYZERS][NZCOLSSMOD][NXROWSSMOD]
amplitude histos
int fMonRow2
row index, for tower 1
void SetIsZeroSuppressed(bool iszs=true)
TH2D * fAmplitudeVsEvent[NANALYZERS]
Amplitude vs envent number.
TH1D * fTofDiff[NANALYZERS]
Difference in tof between reference.
Raw data fitting: Peak Finder.
AliCaloFitResults fMon2[NANALYZERS]
results for tower 2
TH1D * fAmpDiff[NANALYZERS]
Difference in amplitude between reference.