AliRoot Core  v5-06-30 (35d6c57)
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
AliMUONClusterSplitterMLEM.cxx
Go to the documentation of this file.
1 /**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15 
16 /* $Id$ */
17 
18 //-----------------------------------------------------------------------------
27 //-----------------------------------------------------------------------------
28 
30 #include "AliMUONClusterFinderMLEM.h" // for status flag constants
31 
32 #include "AliMUONCluster.h"
33 #include "AliMUONPad.h"
34 #include "AliMUONPad.h"
35 #include "AliMUONConstants.h"
36 #include "AliMpDEManager.h"
37 #include "AliMUONMathieson.h"
38 
39 #include "AliMpEncodePair.h"
40 
41 #include "AliLog.h"
42 
43 #include <TClonesArray.h>
44 #include <TH2.h>
45 #include <TMath.h>
46 #include <TMatrixD.h>
47 #include <TObjArray.h>
48 #include <TRandom.h>
49 #include <Riostream.h>
50 
51 using std::endl;
52 using std::cout;
56 
57 //const Double_t AliMUONClusterSplitterMLEM::fgkCouplMin = 1.e-3; // threshold on coupling
58 const Double_t AliMUONClusterSplitterMLEM::fgkCouplMin = 1.e-2; // threshold on coupling
59 
60 //_____________________________________________________________________________
62  TObjArray* pixArray,
63  Double_t lowestPixelCharge,
64  Double_t lowestPadCharge,
65  Double_t lowestClusterCharge)
66 : TObject(),
67 fPixArray(pixArray),
68 fMathieson(0x0),
69 fDetElemId(detElemId),
70 fNpar(0),
71 fQtot(0),
72 fnCoupled(0),
73 fDebug(0),
74 fLowestPixelCharge(lowestPixelCharge),
75 fLowestPadCharge(lowestPadCharge),
76 fLowestClusterCharge(lowestClusterCharge)
77 {
79 
81 
82  Float_t kx3 = AliMUONConstants::SqrtKx3();
83  Float_t ky3 = AliMUONConstants::SqrtKy3();
84  Float_t pitch = AliMUONConstants::Pitch();
85 
86  if ( stationType == AliMq::kStation1 )
87  {
91  }
92 
93  fMathieson = new AliMUONMathieson;
94 
95  fMathieson->SetPitch(pitch);
96  fMathieson->SetSqrtKx3AndDeriveKx2Kx4(kx3);
97  fMathieson->SetSqrtKy3AndDeriveKy2Ky4(ky3);
98 
99 }
100 
101 //_____________________________________________________________________________
103 {
105 
106  delete fMathieson;
107 }
108 
109 //_____________________________________________________________________________
110 void
112  Int_t ic, Int_t jc, Int_t mode,
113  Bool_t *used, TObjArray *pix)
114 {
116 
117  Int_t nx = mlem->GetNbinsX();
118  Int_t ny = mlem->GetNbinsY();
119  Double_t cont1, cont = mlem->GetBinContent(mlem->GetBin(jc,ic));
120  AliMUONPad *pixPtr = 0;
121 
122  Int_t ie = TMath::Min(ic+1,ny), je = TMath::Min(jc+1,nx);
123  for (Int_t i = TMath::Max(ic-1,1); i <= ie; ++i) {
124  for (Int_t j = TMath::Max(jc-1,1); j <= je; ++j) {
125  if (i != ic && j != jc) continue;
126  if (used[(i-1)*nx+j-1]) continue;
127  cont1 = mlem->GetBinContent(mlem->GetBin(j,i));
128  if (mode && cont1 > cont) continue;
129  used[(i-1)*nx+j-1] = kTRUE;
130  if (cont1 < fLowestPixelCharge) continue;
131  if (pix) pix->Add(BinToPix(mlem,j,i));
132  else {
133  pixPtr = new AliMUONPad (mlem->GetXaxis()->GetBinCenter(j),
134  mlem->GetYaxis()->GetBinCenter(i), 0, 0, cont1);
135  fPixArray->Add(pixPtr);
136  }
137  AddBin(mlem, i, j, mode, used, pix); // recursive call
138  }
139  }
140 }
141 
142 //_____________________________________________________________________________
143 void
145  TMatrixD& aijcluclu,
146  Bool_t *used, Int_t *clustNumb, Int_t &nCoupled)
147 {
149 
150  for (Int_t i = 0; i < nclust; ++i) {
151  if (used[i]) continue;
152  if (aijcluclu(i,ic) < fgkCouplMin) continue;
153  used[i] = kTRUE;
154  clustNumb[nCoupled++] = i;
155  AddCluster(i, nclust, aijcluclu, used, clustNumb, nCoupled);
156  }
157 }
158 
159 //_____________________________________________________________________________
160 TObject*
162  Int_t jc, Int_t ic)
163 {
165 
166  Double_t yc = mlem->GetYaxis()->GetBinCenter(ic);
167  Double_t xc = mlem->GetXaxis()->GetBinCenter(jc);
168 
169  Int_t nPix = fPixArray->GetEntriesFast();
170  AliMUONPad *pixPtr = NULL;
171 
172  // Compare pixel and bin positions
173  for (Int_t i = 0; i < nPix; ++i) {
174  pixPtr = (AliMUONPad*) fPixArray->UncheckedAt(i);
175  if (pixPtr->Charge() < fLowestPixelCharge) continue;
176  if (TMath::Abs(pixPtr->Coord(0)-xc)<1.e-4 && TMath::Abs(pixPtr->Coord(1)-yc)<1.e-4)
177  {
178  //return (TObject*) pixPtr;
179  return pixPtr;
180  }
181  }
182  AliError(Form(" Something wrong ??? %f %f ", xc, yc));
183  return NULL;
184 }
185 
186 //_____________________________________________________________________________
187 Float_t
189  const AliMUONPad& pad)
190 {
193 
194  TVector2 lowerLeft(TVector2(x,y)-pad.Position()-pad.Dimensions());
195  TVector2 upperRight(lowerLeft + pad.Dimensions()*2.0);
196 
197  return fMathieson->IntXY(lowerLeft.X(),lowerLeft.Y(),
198  upperRight.X(),upperRight.Y());
199 }
200 
201 //_____________________________________________________________________________
202 void
204  Int_t & /*fNpar*/, Double_t * /*gin*/,
205  Double_t &f, Double_t *par, Int_t iflag)
206 {
208 
209  Int_t indx, npads=0;
210  Double_t charge, delta, coef=0, chi2=0, qTot = 0;
211  static Double_t qAver = 0;
212 
213  Int_t mult = cluster.Multiplicity(), iend = fNpar / 3;
214  for (Int_t j = 0; j < mult; ++j)
215  {
216  AliMUONPad* pad = cluster.Pad(j);
217  //if ( pad->Status() !=1 || pad->IsSaturated() ) continue;
219  pad->Charge() == 0 ) continue;
220  if (iflag == 0) {
221  if ( pad->IsReal() ) npads++; // exclude virtual pads
222  qTot += pad->Charge();
223  }
224  charge = 0;
225  for (Int_t i = 0; i <= iend; ++i)
226  {
227  // sum over hits
228  indx = 3 * i;
229  coef = Param2Coef(i, coef, par);
230  charge += ChargeIntegration(par[indx],par[indx+1],*pad) * coef;
231  }
232  charge *= fQtot;
233  delta = charge - pad->Charge();
234  delta *= delta;
235  delta /= pad->Charge();
236  chi2 += delta;
237  } // for (Int_t j=0;
238  if (iflag == 0 && npads) qAver = qTot / npads;
239  if (!npads && iflag==0)
240  {
241  AliError(Form("Got npads=0. Please check"));
242  }
243  f = chi2 / qAver;
244 }
245 
246 //_____________________________________________________________________________
247 Double_t AliMUONClusterSplitterMLEM::Param2Coef(Int_t icand, Double_t coef, Double_t *par) const
248 {
250 
251  if (fNpar == 2) return 1.;
252  if (fNpar == 5) return icand==0 ? par[2] : TMath::Max(1.-par[2],0.);
253  if (icand == 0) return par[2];
254  if (icand == 1) return TMath::Max((1.-par[2])*par[5], 0.);
255  return TMath::Max(1.-par[2]-coef,0.);
256 }
257 
258 //_____________________________________________________________________________
259 Int_t
261  Int_t iSimple, Int_t nfit,
262  const Int_t *clustFit, TObjArray **clusters,
263  Double_t *parOk,
264  TObjArray& clusterList, TH2 *mlem)
265 {
267 
268  // AliDebug(2,Form("iSimple=%d nfit=%d",iSimple,nfit));
269 
270  Double_t xmin = mlem->GetXaxis()->GetXmin() - mlem->GetXaxis()->GetBinWidth(1);
271  Double_t xmax = mlem->GetXaxis()->GetXmax() + mlem->GetXaxis()->GetBinWidth(1);
272  Double_t ymin = mlem->GetYaxis()->GetXmin() - mlem->GetYaxis()->GetBinWidth(1);
273  Double_t ymax = mlem->GetYaxis()->GetXmax() + mlem->GetYaxis()->GetBinWidth(1);
274 
275  // Number of pads to use and number of virtual pads
276  Int_t npads = 0, nVirtual = 0, nfit0 = nfit;
277  //cluster.Print("full");
278  Int_t mult = cluster.Multiplicity();
279  for (Int_t i = 0; i < mult; ++i )
280  {
281  AliMUONPad* pad = cluster.Pad(i);
282  if ( !pad->IsReal() ) ++nVirtual;
283  //if ( pad->Status() !=1 || pad->IsSaturated() ) continue;
284  if ( pad->Status() != AliMUONClusterFinderMLEM::GetUseForFitFlag() ) continue;
285  if ( pad->IsReal() )
286  {
287  ++npads;
288  }
289  }
290 
291  fNpar = 0;
292  fQtot = 0;
293 
294  if (npads < 2) return 0;
295 
296  // FIXME : AliWarning("Reconnect the following code for hit/track passing ?");
297 
298  // Int_t tracks[3] = {-1, -1, -1};
299 
300  /*
301  Int_t digit = 0;
302  AliMUONDigit *mdig = 0;
303  for (Int_t cath=0; cath<2; cath++) {
304  for (Int_t i=0; i<fnPads[0]+fnPads[1]; i++) {
305  if (fPadIJ[0][i] != cath) continue;
306  if (fPadIJ[1][i] != 1) continue;
307  if (fXyq[3][i] < 0) continue; // exclude virtual pads
308  digit = TMath::Nint (fXyq[5][i]);
309  if (digit >= 0) mdig = fInput->Digit(cath,digit);
310  else mdig = fInput->Digit(TMath::Even(cath),-digit-1);
311  //if (!mdig) mdig = fInput->Digit(TMath::Even(cath),digit);
312  if (!mdig) continue; // protection for cluster display
313  if (mdig->Hit() >= 0) {
314  if (tracks[0] < 0) {
315  tracks[0] = mdig->Hit();
316  tracks[1] = mdig->Track(0);
317  } else if (mdig->Track(0) < tracks[1]) {
318  tracks[0] = mdig->Hit();
319  tracks[1] = mdig->Track(0);
320  }
321  }
322  if (mdig->Track(1) >= 0 && mdig->Track(1) != tracks[1]) {
323  if (tracks[2] < 0) tracks[2] = mdig->Track(1);
324  else tracks[2] = TMath::Min (tracks[2], mdig->Track(1));
325  }
326  } // for (Int_t i=0;
327  } // for (Int_t cath=0;
328  */
329 
330  // Get number of pads in X and Y
331  //const Int_t kStatusToTest(1);
332  const Int_t kStatusToTest(AliMUONClusterFinderMLEM::GetUseForFitFlag());
333 
334  Long_t nofPads = cluster.NofPads(kStatusToTest);
335  Int_t nInX = AliMp::PairFirst(nofPads);
336  Int_t nInY = AliMp::PairSecond(nofPads);
337 
338  if (fDebug) {
339  Int_t npadOK = 0;
340  for (Int_t j = 0; j < cluster.Multiplicity(); ++j) {
341  AliMUONPad *pad = cluster.Pad(j);
342  //if (pad->Status() == 1 && !pad->IsSaturated()) npadOK++;
343  if (pad->Status() == AliMUONClusterFinderMLEM::GetUseForFitFlag() && !pad->IsSaturated()) npadOK++;
344  }
345  cout << " Number of pads to fit: " << npadOK << endl;
346  cout << " nInX and Y: " << nInX << " " << nInY << endl;
347  }
348 
349  Int_t nfitMax = 3;
350  nfitMax = TMath::Min (nfitMax, (npads + 1) / 3);
351  if (nfitMax > 1) {
352  if (((nInX < 3) && (nInY < 3)) || ((nInX == 3) && (nInY < 3)) || ((nInX < 3) && (nInY == 3))) nfitMax = 1; // not enough pads in each direction
353  }
354  if (nfit > nfitMax) nfit = nfitMax;
355 
356  // Take cluster maxima as fitting seeds
357  TObjArray *pix;
358  AliMUONPad *pixPtr;
359  Int_t npxclu;
360  Double_t cont, cmax = 0, xseed = 0, yseed = 0, errOk[8], qq = 0;
361 
362  for ( int i = 0; i < 8; ++i ) errOk[i]=0.0;
363 
364  Double_t xyseed[3][2], qseed[3], xyCand[3][2] = {{0},{0}}, sigCand[3][2] = {{0},{0}};
365 
366  for (Int_t ifit = 1; ifit <= nfit0; ++ifit)
367  {
368  cmax = 0;
369  pix = clusters[clustFit[ifit-1]];
370  npxclu = pix->GetEntriesFast();
371  //qq = 0;
372  for (Int_t clu = 0; clu < npxclu; ++clu)
373  {
374  pixPtr = (AliMUONPad*) pix->UncheckedAt(clu);
375  cont = pixPtr->Charge();
376  fQtot += cont;
377  if (cont > cmax)
378  {
379  cmax = cont;
380  xseed = pixPtr->Coord(0);
381  yseed = pixPtr->Coord(1);
382  }
383  qq += cont;
384  xyCand[0][0] += pixPtr->Coord(0) * cont;
385  xyCand[0][1] += pixPtr->Coord(1) * cont;
386  sigCand[0][0] += pixPtr->Coord(0) * pixPtr->Coord(0) * cont;
387  sigCand[0][1] += pixPtr->Coord(1) * pixPtr->Coord(1) * cont;
388  }
389  xyseed[ifit-1][0] = xseed;
390  xyseed[ifit-1][1] = yseed;
391  qseed[ifit-1] = cmax;
392  } // for (Int_t ifit=1;
393 
394  xyCand[0][0] /= qq; // <x>
395  xyCand[0][1] /= qq; // <y>
396  sigCand[0][0] = sigCand[0][0]/qq - xyCand[0][0]*xyCand[0][0]; // <x^2> - <x>^2
397  sigCand[0][0] = sigCand[0][0] > 0 ? TMath::Sqrt (sigCand[0][0]) : 0;
398  sigCand[0][1] = sigCand[0][1]/qq - xyCand[0][1]*xyCand[0][1]; // <y^2> - <y>^2
399  sigCand[0][1] = sigCand[0][1] > 0 ? TMath::Sqrt (sigCand[0][1]) : 0;
400  if (fDebug) cout << xyCand[0][0] << " " << xyCand[0][1] << " " << sigCand[0][0] << " " << sigCand[0][1] << endl;
401 
402  Int_t nDof, maxSeed[3];//, nMax = 0;
403 
404  if ( nfit0 < 0 || nfit0 > 3 ) {
405  AliErrorStream() << "Wrong nfit0 value: " << nfit0 << endl;
406  return nfit;
407  }
408  TMath::Sort(nfit0, qseed, maxSeed, kTRUE); // in decreasing order
409 
410  Double_t step[3]={0.01,0.002,0.02}, fmin, chi2o = 9999, chi2n;
411  Double_t *gin = 0, func0, func1, param[8]={0}, step0[8]={0};
412  Double_t param0[2][8]={{0},{0}}, deriv[2][8]={{0},{0}};
413  Double_t shift[8]={0}, stepMax, derMax, parmin[8]={0}, parmax[8]={0}, func2[2]={0}, shift0;
414  Double_t delta[8]={0}, scMax, dder[8], estim, shiftSave = 0;
415  Int_t min, max, nCall = 0, nLoop, idMax = 0, nFail;
416  Double_t rad, dist[3] = {0};
417 
418  // Try to fit with one-track hypothesis, then 2-track. If chi2/dof is
419  // lower, try 3-track (if number of pads is sufficient).
420  Int_t iflag = 0; // for the first call of fcn1
421  for (Int_t iseed = 0; iseed < nfit; ++iseed)
422  {
423 
424  Int_t memory[8] = {0};
425  if (iseed)
426  {
427  for (Int_t j = 0; j < fNpar; ++j)
428  {
429  param[j] = parOk[j];
430  }
431  param[fNpar] = 0.6;
432  parmin[fNpar] = 1E-9;
433  parmax[fNpar++] = 1;
434  }
435 
436  if (nfit == 1)
437  {
438  param[fNpar] = xyCand[0][0]; // take COG
439  }
440  else
441  {
442  param[fNpar] = xyseed[maxSeed[iseed]][0];
443  //param[fNpar] = fNpar==0 ? -16.1651 : -15.2761;
444  }
445  parmin[fNpar] = xmin;
446  parmax[fNpar++] = xmax;
447  if (nfit == 1)
448  {
449  param[fNpar] = xyCand[0][1]; // take COG
450  }
451  else
452  {
453  param[fNpar] = xyseed[maxSeed[iseed]][1];
454  //param[fNpar] = fNpar==1 ? -15.1737 : -15.8487;
455  }
456  parmin[fNpar] = ymin;
457  parmax[fNpar++] = ymax;
458 
459  for (Int_t j = 0; j < fNpar; ++j)
460  {
461  step0[j] = shift[j] = step[j%3];
462  }
463 
464  if (iseed)
465  {
466  for (Int_t j = 0; j < fNpar; ++j)
467  {
468  param0[1][j] = 0;
469  }
470  }
471  if (fDebug) {
472  for (Int_t j = 0; j < fNpar; ++j) cout << param[j] << " ";
473  cout << endl;
474  }
475 
476  // Try new algorithm
477  min = nLoop = 1; stepMax = func2[1] = derMax = 999999; nFail = 0;
478 
479  while (1)
480  {
481  max = !min;
482  Fcn1(cluster,fNpar, gin, func0, param, iflag); nCall++;
483  iflag = 1;
484  //cout << " Func: " << func0 << endl;
485 
486  func2[max] = func0;
487  for (Int_t j = 0; j < fNpar; ++j)
488  {
489  param0[max][j] = param[j];
490  delta[j] = step0[j];
491  param[j] += delta[j] / 10;
492  if (j > 0) param[j-1] -= delta[j-1] / 10;
493  Fcn1(cluster,fNpar, gin, func1, param, iflag); nCall++;
494  deriv[max][j] = (func1 - func0) / delta[j] * 10; // first derivative
495  //cout << j << " " << deriv[max][j] << endl;
496  dder[j] = param0[0][j] != param0[1][j] ? (deriv[0][j] - deriv[1][j]) /
497  (param0[0][j] - param0[1][j]) : 0; // second derivative
498  }
499  param[fNpar-1] -= delta[fNpar-1] / 10;
500  if (nCall > 2000) break;
501 
502  min = func2[0] < func2[1] ? 0 : 1;
503  nFail = min == max ? 0 : nFail + 1;
504 
505  stepMax = derMax = estim = 0;
506  for (Int_t j = 0; j < fNpar; ++j)
507  {
508  // Estimated distance to minimum
509  shift0 = shift[j];
510  if (nLoop == 1)
511  {
512  shift[j] = TMath::Sign (step0[j], -deriv[max][j]); // first step
513  }
514  else if (TMath::Abs(deriv[0][j]) < 1.e-3 && TMath::Abs(deriv[1][j]) < 1.e-3)
515  {
516  shift[j] = 0;
517  }
518  else if (((deriv[min][j]*deriv[!min][j] > 0) && (TMath::Abs(deriv[min][j]) > TMath::Abs(deriv[!min][j])))
519  || (TMath::Abs(deriv[0][j]-deriv[1][j]) < 1.e-3) || (TMath::Abs(dder[j]) < 1.e-6))
520  {
521  shift[j] = -TMath::Sign (shift[j], (func2[0]-func2[1]) * (param0[0][j]-param0[1][j]));
522  if (min == max)
523  {
524  if (memory[j] > 1)
525  {
526  shift[j] *= 2;
527  }
528  memory[j]++;
529  }
530  }
531  else
532  {
533  shift[j] = dder[j] != 0 ? -deriv[min][j] / dder[j] : 0;
534  memory[j] = 0;
535  }
536 
537  Double_t es = TMath::Abs(shift[j]) / step0[j];
538  if (es > estim)
539  {
540  estim = es;
541  }
542 
543  // Too big step
544  if (TMath::Abs(shift[j])/step0[j] > 10) shift[j] = TMath::Sign(10.,shift[j]) * step0[j]; //
545 
546  // Failed to improve minimum
547  if (min != max)
548  {
549  memory[j] = 0;
550  param[j] = param0[min][j];
551  if (TMath::Abs(shift[j]+shift0) > 0.1*step0[j])
552  {
553  shift[j] = (shift[j] + shift0) / 2;
554  }
555  else
556  {
557  shift[j] /= -2;
558  }
559  }
560 
561  // Too big step
562  if (TMath::Abs(shift[j]*deriv[min][j]) > func2[min])
563  {
564  shift[j] = TMath::Sign (func2[min]/deriv[min][j], shift[j]);
565  }
566 
567  // Introduce step relaxation factor
568  if (memory[j] < 3)
569  {
570  scMax = 1 + 4 / TMath::Max(nLoop/2.,1.);
571  if (TMath::Abs(shift0) > 0 && TMath::Abs(shift[j]/shift0) > scMax)
572  {
573  shift[j] = TMath::Sign (shift0*scMax, shift[j]);
574  }
575  }
576  param[j] += shift[j];
577  // Check parameter limits
578  if (param[j] < parmin[j])
579  {
580  shift[j] = parmin[j] - param[j];
581  param[j] = parmin[j];
582  }
583  else if (param[j] > parmax[j])
584  {
585  shift[j] = parmax[j] - param[j];
586  param[j] = parmax[j];
587  }
588  //cout << " xxx " << j << " " << shift[j] << " " << param[j] << endl;
589  stepMax = TMath::Max (stepMax, TMath::Abs(shift[j]/step0[j]));
590  if (TMath::Abs(deriv[min][j]) > derMax)
591  {
592  idMax = j;
593  derMax = TMath::Abs (deriv[min][j]);
594  }
595  } // for (Int_t j=0; j<fNpar;
596 
597  if (((estim < 1) && (derMax < 2)) || nLoop > 150) break; // minimum was found
598 
599  nLoop++;
600 
601  // Check for small step
602  if (shift[idMax] == 0)
603  {
604  shift[idMax] = step0[idMax]/10;
605  param[idMax] += shift[idMax];
606  continue;
607  }
608 
609  if (!memory[idMax] && derMax > 0.5 && nLoop > 10)
610  {
611  if (dder[idMax] != 0 && TMath::Abs(deriv[min][idMax]/dder[idMax]/shift[idMax]) > 10)
612  {
613  if (min == max) dder[idMax] = -dder[idMax];
614  shift[idMax] = -deriv[min][idMax] / dder[idMax] / 10;
615  param[idMax] += shift[idMax];
616  stepMax = TMath::Max (stepMax, TMath::Abs(shift[idMax])/step0[idMax]);
617  if (min == max) shiftSave = shift[idMax];
618  }
619  if (nFail > 10)
620  {
621  param[idMax] -= shift[idMax];
622  shift[idMax] = 4 * shiftSave * (gRandom->Rndm(0) - 0.5);
623  param[idMax] += shift[idMax];
624  }
625  }
626  } // while (1)
627 
628  fmin = func2[min];
629 
630  nDof = npads - fNpar + nVirtual;
631  if (!nDof) nDof++;
632  chi2n = fmin / nDof;
633  if (fDebug) cout << " Chi2 " << chi2n << " " << fNpar << endl;
634 
635  //if (fNpar > 2) cout << param0[min][fNpar-3] << " " << chi2n * (1+TMath::Min(1-param0[min][fNpar-3],0.25)) << endl;
636  //if (chi2n*1.2+1.e-6 > chi2o )
637  if (fNpar > 2 && (chi2n > chi2o || ((iseed == nfit-1)
638  && (chi2n * (1+TMath::Min(1-param0[min][fNpar-3],0.25)) > chi2o))))
639  { fNpar -= 3; break; }
640 
641  // Save parameters and errors
642 
643  if (nInX == 1) {
644  // One pad per direction
645  //for (Int_t i=0; i<fNpar; ++i) if (i == 0 || i == 2 || i == 5) param0[min][i] = xPad;
646  for (Int_t i=0; i<fNpar; ++i) if (i == 0 || i == 2 || i == 5)
647  param0[min][i] = xyCand[0][0];
648  }
649  if (nInY == 1) {
650  // One pad per direction
651  //for (Int_t i=0; i<fNpar; ++i) if (i == 1 || i == 3 || i == 6) param0[min][i] = yPad;
652  for (Int_t i=0; i<fNpar; ++i) if (i == 1 || i == 3 || i == 6)
653  param0[min][i] = xyCand[0][1];
654  }
655 
656  /*
657  if (iseed > 0) {
658  // Find distance to the nearest neighbour
659  dist[0] = dist[1] = TMath::Sqrt ((param0[min][0]-param0[min][2])*
660  (param0[min][0]-param0[min][2])
661  +(param0[min][1]-param0[min][3])*
662  (param0[min][1]-param0[min][3]));
663  if (iseed > 1) {
664  dist[2] = TMath::Sqrt ((param0[min][0]-param0[min][5])*
665  (param0[min][0]-param0[min][5])
666  +(param0[min][1]-param0[min][6])*
667  (param0[min][1]-param0[min][6]));
668  rad = TMath::Sqrt ((param0[min][2]-param0[min][5])*
669  (param0[min][2]-param0[min][5])
670  +(param0[min][3]-param0[min][6])*
671  (param0[min][3]-param0[min][6]));
672  if (dist[2] < dist[0]) dist[0] = dist[2];
673  if (rad < dist[1]) dist[1] = rad;
674  if (rad < dist[2]) dist[2] = rad;
675  }
676  cout << dist[0] << " " << dist[1] << " " << dist[2] << endl;
677  if (dist[TMath::LocMin(iseed+1,dist)] < 1.) { fNpar -= 3; break; }
678  }
679  */
680 
681  for (Int_t i = 0; i < fNpar; ++i) {
682  parOk[i] = param0[min][i];
683  //errOk[i] = fmin;
684  errOk[i] = chi2n;
685  // Bounded params
686  parOk[i] = TMath::Max (parOk[i], parmin[i]);
687  parOk[i] = TMath::Min (parOk[i], parmax[i]);
688  }
689 
690  chi2o = chi2n;
691  if (fmin < 0.1) break; // !!!???
692  } // for (Int_t iseed=0;
693 
694  if (fDebug) {
695  for (Int_t i=0; i<fNpar; ++i) {
696  if (i == 4 || i == 7) {
697  if ((i == 7) || ((i == 4) && (fNpar < 7))) cout << parOk[i] << endl;
698  else cout << parOk[i] * (1-parOk[7]) << endl;
699  continue;
700  }
701  cout << parOk[i] << " " << errOk[i] << endl;
702  }
703  }
704  nfit = (fNpar + 1) / 3;
705  dist[0] = dist[1] = dist[2] = 0;
706 
707  if (nfit > 1) {
708  // Find distance to the nearest neighbour
709  dist[0] = dist[1] = TMath::Sqrt ((parOk[0]-parOk[2])*
710  (parOk[0]-parOk[2])
711  +(parOk[1]-parOk[3])*
712  (parOk[1]-parOk[3]));
713  if (nfit > 2) {
714  dist[2] = TMath::Sqrt ((parOk[0]-parOk[5])*
715  (parOk[0]-parOk[5])
716  +(parOk[1]-parOk[6])*
717  (parOk[1]-parOk[6]));
718  rad = TMath::Sqrt ((parOk[2]-parOk[5])*
719  (parOk[2]-parOk[5])
720  +(parOk[3]-parOk[6])*
721  (parOk[3]-parOk[6]));
722  if (dist[2] < dist[0]) dist[0] = dist[2];
723  if (rad < dist[1]) dist[1] = rad;
724  if (rad < dist[2]) dist[2] = rad;
725  }
726  }
727 
728  Int_t indx;
729 
730  Double_t coef = 0;
731  if (iSimple) fnCoupled = 0;
732  for (Int_t j = 0; j < nfit; ++j) {
733  indx = 3 * j;
734  coef = Param2Coef(j, coef, parOk);
735 
736  //void AliMUONClusterFinderMLEM::AddRawCluster(Double_t x, Double_t y,
737  // Double_t qTot, Double_t fmin,
738  // Int_t nfit, Int_t *tracks,
739  // Double_t /*sigx*/,
740  // Double_t /*sigy*/,
741  // Double_t /*dist*/)
742 
743  if ( coef*fQtot >= fLowestClusterCharge )
744  {
745  //AZ AliMUONCluster* cluster1 = new AliMUONCluster();
746  AliMUONCluster* cluster1 = new AliMUONCluster(cluster);
747 
748  cluster1->SetCharge(coef*fQtot,coef*fQtot);
749  cluster1->SetPosition(TVector2(parOk[indx],parOk[indx+1]),TVector2(sigCand[0][0],sigCand[0][1]));
750  //cluster1->SetChi2(dist[TMath::LocMin(nfit,dist)]);
751  Int_t idx = TMath::LocMin(nfit,dist);
752  if ( idx < 0 || idx > 2 ) {
753  AliErrorStream() << "Wrong index value: " << idx << endl;
754  return nfit;
755  }
756  cluster1->SetChi2(dist[idx]);
757 
758  // FIXME: we miss some information in this cluster, as compared to
759  // the original AddRawCluster code.
760 
761  AliDebug(2,Form("Adding RawCluster detElemId %4d mult %2d charge %5d (xl,yl)=(%9.6g,%9.6g)",
762  fDetElemId,cluster1->Multiplicity(),(Int_t)cluster1->Charge(),
763  cluster1->Position().X(),cluster1->Position().Y()));
764 
765  clusterList.Add(cluster1);
766  }
767  // AddRawCluster (parOk[indx], // double x
768  // parOk[indx+1], // double y
769  // coef*qTot, // double charge
770  // errOk[indx], // double fmin
771  // nfit0+10*nfit+100*nMax+10000*fnCoupled, // int nfit
772  // tracks, // int* tracks
773  // sigCand[0][0], // double sigx
774  // sigCand[0][1], // double sigy
775  // dist[TMath::LocMin(nfit,dist)] // double dist
776  // );
777  }
778  return nfit;
779 }
780 
781 
782 //_____________________________________________________________________________
783 void
785  TH2 *mlem, Double_t *coef,
786  TObjArray& clusterList)
787 {
791 
792  Int_t nx = mlem->GetNbinsX();
793  Int_t ny = mlem->GetNbinsY();
794  Int_t nPix = fPixArray->GetEntriesFast();
795 
796  Double_t cont;
797  Int_t nclust = 0, indx, indx1, nxy = ny * nx;
798  Bool_t *used = new Bool_t[nxy];
799 
800  for (Int_t j = 0; j < nxy; ++j) used[j] = kFALSE;
801 
802  TObjArray *clusters[200]={0};
803  TObjArray *pix;
804 
805  // Find clusters of histogram bins (easier to work in 2-D space)
806  for (Int_t i = 1; i <= ny; ++i)
807  {
808  for (Int_t j = 1; j <= nx; ++j)
809  {
810  indx = (i-1)*nx + j - 1;
811  if (used[indx]) continue;
812  cont = mlem->GetBinContent(mlem->GetBin(j,i));
813  if (cont < fLowestPixelCharge) continue;
814  pix = new TObjArray(20);
815  used[indx] = 1;
816  pix->Add(BinToPix(mlem,j,i));
817  AddBin(mlem, i, j, 0, used, pix); // recursive call
818  if (nclust >= 200) AliFatal(" Too many clusters !!!");
819  clusters[nclust++] = pix;
820  } // for (Int_t j=1; j<=nx; j++) {
821  } // for (Int_t i=1; i<=ny;
822  if (fDebug) cout << nclust << endl;
823  delete [] used;
824 
825  // Compute couplings between clusters and clusters to pads
826  Int_t npad = cluster.Multiplicity();
827 
828  // Exclude pads with overflows
829  /*
830  for (Int_t j = 0; j < npad; ++j)
831  {
832  AliMUONPad* pad = cluster.Pad(j);
833  if ( pad->IsSaturated() )
834  {
835  pad->SetStatus(-5);
836  }
837  else
838  {
839  pad->SetStatus(0);
840  }
841  }
842  */
843 
844  // Compute couplings of clusters to pads (including overflows)
845  TMatrixD aijclupad(nclust,npad);
846  aijclupad = 0;
847  Int_t npxclu;
848  for (Int_t iclust = 0; iclust < nclust; ++iclust)
849  {
850  pix = clusters[iclust];
851  npxclu = pix->GetEntriesFast();
852  for (Int_t i = 0; i < npxclu; ++i)
853  {
854  indx = fPixArray->IndexOf(pix->UncheckedAt(i));
855  for (Int_t j = 0; j < npad; ++j)
856  {
857  //AliMUONPad* pad = cluster.Pad(j);
858  //if ( pad->Status() < 0 && pad->Status() != -5) continue;
859  if (coef[j*nPix+indx] < fgkCouplMin) continue;
860  aijclupad(iclust,j) += coef[j*nPix+indx];
861  }
862  }
863  }
864 
865  // Compute couplings between clusters (exclude overflows)
866  TMatrixD aijcluclu(nclust,nclust);
867  aijcluclu = 0;
868  for (Int_t iclust = 0; iclust < nclust; ++iclust)
869  {
870  for (Int_t j = 0; j < npad; ++j)
871  {
872  // Exclude overflows
873  //if ( cluster.Pad(j)->Status() < 0) continue;
874  if ( cluster.Pad(j)->IsSaturated()) continue;
875  if (aijclupad(iclust,j) < fgkCouplMin) continue;
876  for (Int_t iclust1=iclust+1; iclust1<nclust; iclust1++)
877  {
878  if (aijclupad(iclust1,j) < fgkCouplMin) continue;
879  aijcluclu(iclust,iclust1) +=
880  TMath::Sqrt (aijclupad(iclust,j)*aijclupad(iclust1,j));
881  }
882  }
883  }
884  for (Int_t iclust = 0; iclust < nclust; ++iclust)
885  {
886  for (Int_t iclust1 = iclust+1; iclust1 < nclust; ++iclust1)
887  {
888  aijcluclu(iclust1,iclust) = aijcluclu(iclust,iclust1);
889  }
890  }
891 
892  if (fDebug && nclust > 1) aijcluclu.Print();
893 
894  // Find groups of coupled clusters
895  used = new Bool_t[nclust];
896  for (Int_t j = 0; j < nclust; ++j) used[j] = kFALSE;
897 
898  Int_t *clustNumb = new Int_t[nclust];
899  Int_t nCoupled, nForFit, minGroup[3], clustFit[3], nfit = 0;
900  //Double_t parOk[8];
901  Double_t parOk[8] = {0}; //AZ
902 
903  for (Int_t igroup = 0; igroup < nclust; ++igroup)
904  {
905  if (used[igroup]) continue;
906  used[igroup] = kTRUE;
907  clustNumb[0] = igroup;
908  nCoupled = 1;
909  // Find group of coupled clusters
910  AddCluster(igroup, nclust, aijcluclu, used, clustNumb, nCoupled); // recursive
911 
912  if (fDebug) {
913  cout << " nCoupled: " << nCoupled << endl;
914  for (Int_t i=0; i<nCoupled; ++i) cout << clustNumb[i] << " "; cout << endl;
915  }
916 
917  fnCoupled = nCoupled;
918 
919  while (nCoupled > 0)
920  {
921  if (nCoupled < 4)
922  {
923  nForFit = nCoupled;
924  for (Int_t i = 0; i < nCoupled; ++i) clustFit[i] = clustNumb[i];
925  }
926  else
927  {
928  // Too many coupled clusters to fit - try to decouple them
929  // Find the lowest coupling of 1, 2, min(3,nLinks/2) pixels with
930  // all the others in the group
931  for (Int_t j = 0; j < 3; ++j) minGroup[j] = -1;
932  Double_t coupl = MinGroupCoupl(nCoupled, clustNumb, aijcluclu, minGroup);
933 
934  // Flag clusters for fit
935  nForFit = 0;
936  while (nForFit < 3 && minGroup[nForFit] >= 0)
937  {
938  if (fDebug) cout << clustNumb[minGroup[nForFit]] << " ";
939  clustFit[nForFit] = clustNumb[minGroup[nForFit]];
940  clustNumb[minGroup[nForFit]] -= 999;
941  nForFit++;
942  }
943  if (fDebug) cout << " nForFit " << nForFit << " " << coupl << endl;
944  } // else
945 
946  // Select pads for fit.
947  if (SelectPad(cluster,nCoupled, nForFit, clustNumb, clustFit, aijclupad) < 3 && nCoupled > 1)
948  {
949  // Deselect pads
950  for (Int_t j = 0; j < npad; ++j)
951  {
952  AliMUONPad* pad = cluster.Pad(j);
953  //if ( pad->Status()==1 ) pad->SetStatus(0);
954  //if ( pad->Status()==-9) pad->SetStatus(-5);
958  }
959  // Merge the failed cluster candidates (with too few pads to fit) with
960  // the one with the strongest coupling
961  Merge(cluster,nForFit, nCoupled, clustNumb, clustFit, clusters, aijcluclu, aijclupad);
962  }
963  else
964  {
965  // Do the fit
966  nfit = Fit(cluster,0, nForFit, clustFit, clusters, parOk, clusterList, mlem);
967  if (nfit == 0) {
968  //cout << " (nfit == 0) " << fNpar << " " << cluster.Multiplicity() << endl;
969  fNpar = 0; // should be 0 by itself but just in case ...
970  }
971  }
972 
973  // Subtract the fitted charges from pads with strong coupling and/or
974  // return pads for further use
975  UpdatePads(cluster,nfit, parOk);
976 
977  // Mark used pads
978  for (Int_t j = 0; j < npad; ++j)
979  {
980  AliMUONPad* pad = cluster.Pad(j);
981  //if ( pad->Status()==1 ) pad->SetStatus(-2);
982  //if ( pad->Status()==-9) pad->SetStatus(-5);
985  }
986 
987  // Sort the clusters (move to the right the used ones)
988  Int_t beg = 0, end = nCoupled - 1;
989  while (beg < end)
990  {
991  if (clustNumb[beg] >= 0) { ++beg; continue; }
992  for (Int_t j = end; j > beg; --j)
993  {
994  if (clustNumb[j] < 0) continue;
995  end = j - 1;
996  indx = clustNumb[beg];
997  clustNumb[beg] = clustNumb[j];
998  clustNumb[j] = indx;
999  break;
1000  }
1001  ++beg;
1002  }
1003 
1004  nCoupled -= nForFit;
1005  if (nCoupled > 3)
1006  {
1007  // Remove couplings of used clusters
1008  for (Int_t iclust = nCoupled; iclust < nCoupled+nForFit; ++iclust)
1009  {
1010  indx = clustNumb[iclust] + 999;
1011  for (Int_t iclust1 = 0; iclust1 < nCoupled; ++iclust1)
1012  {
1013  indx1 = clustNumb[iclust1];
1014  aijcluclu(indx,indx1) = aijcluclu(indx1,indx) = 0;
1015  }
1016  }
1017 
1018  // Update the remaining clusters couplings (subtract couplings from
1019  // the used pads) - overflows excluded
1020  for (Int_t j = 0; j < npad; ++j)
1021  {
1022  AliMUONPad* pad = cluster.Pad(j);
1023  //if ( pad->Status() != -2) continue;
1024  if ( pad->Status() != AliMUONClusterFinderMLEM::GetModifiedFlag()) continue;
1025  for (Int_t iclust=0; iclust<nCoupled; ++iclust)
1026  {
1027  indx = clustNumb[iclust];
1028  if (aijclupad(indx,j) < fgkCouplMin) continue;
1029  for (Int_t iclust1 = iclust+1; iclust1 < nCoupled; ++iclust1)
1030  {
1031  indx1 = clustNumb[iclust1];
1032  if (aijclupad(indx1,j) < fgkCouplMin) continue;
1033  // Check this
1034  aijcluclu(indx,indx1) -=
1035  TMath::Sqrt (aijclupad(indx,j)*aijclupad(indx1,j));
1036  aijcluclu(indx1,indx) = aijcluclu(indx,indx1);
1037  }
1038  }
1039  //pad->SetStatus(-8);
1041  } // for (Int_t j=0; j<npad;
1042  } // if (nCoupled > 3)
1043  } // while (nCoupled > 0)
1044  } // for (Int_t igroup=0; igroup<nclust;
1045 
1046  for (Int_t iclust = 0; iclust < nclust; ++iclust)
1047  {
1048  pix = clusters[iclust];
1049  pix->Clear();
1050  delete pix;
1051  }
1052  delete [] clustNumb;
1053  delete [] used;
1054 
1055 }
1056 
1057 //_____________________________________________________________________________
1058 void
1060  Int_t nForFit, Int_t nCoupled,
1061  const Int_t *clustNumb, const Int_t *clustFit,
1062  TObjArray **clusters,
1063  TMatrixD& aijcluclu, TMatrixD& aijclupad)
1064 {
1066 
1067  Int_t indx, indx1, npxclu, imax=0;
1068  TObjArray *pix, *pix1;
1069  Double_t couplMax;
1070 
1071  for (Int_t icl = 0; icl < nForFit; ++icl)
1072  {
1073  indx = clustFit[icl];
1074  pix = clusters[indx];
1075  npxclu = pix->GetEntriesFast();
1076  couplMax = -1;
1077  for (Int_t icl1 = 0; icl1 < nCoupled; ++icl1)
1078  {
1079  indx1 = clustNumb[icl1];
1080  if (indx1 < 0) continue;
1081  if ( aijcluclu(indx,indx1) > couplMax)
1082  {
1083  couplMax = aijcluclu(indx,indx1);
1084  imax = indx1;
1085  }
1086  } // for (Int_t icl1=0;
1087  // Add to it
1088  pix1 = clusters[imax];
1089  // Add pixels
1090  for (Int_t i = 0; i < npxclu; ++i)
1091  {
1092  pix1->Add(pix->UncheckedAt(i));
1093  pix->RemoveAt(i);
1094  }
1095 
1096  //Add cluster-to-cluster couplings
1097  for (Int_t icl1 = 0; icl1 < nCoupled; ++icl1)
1098  {
1099  indx1 = clustNumb[icl1];
1100  if (indx1 < 0 || indx1 == imax) continue;
1101  aijcluclu(indx1,imax) += aijcluclu(indx,indx1);
1102  aijcluclu(imax,indx1) = aijcluclu(indx1,imax);
1103  }
1104  aijcluclu(indx,imax) = aijcluclu(imax,indx) = 0;
1105 
1106  //Add cluster-to-pad couplings
1107  Int_t mult = cluster.Multiplicity();
1108  for (Int_t j = 0; j < mult; ++j)
1109  {
1110  AliMUONPad* pad = cluster.Pad(j);
1111  //if ( pad->Status() < 0 && pad->Status() != -5 ) continue;// exclude used pads
1112  if ( pad->Status() != AliMUONClusterFinderMLEM::GetZeroFlag()) continue;// exclude used pads
1113  aijclupad(imax,j) += aijclupad(indx,j);
1114  aijclupad(indx,j) = 0;
1115  }
1116  } // for (Int_t icl=0; icl<nForFit;
1117 }
1118 
1119 
1120 //_____________________________________________________________________________
1121 Double_t
1122 AliMUONClusterSplitterMLEM::MinGroupCoupl(Int_t nCoupled, const Int_t *clustNumb,
1123  const TMatrixD& aijcluclu, Int_t *minGroup)
1124 {
1126 
1127  Int_t i123max = TMath::Min(3,nCoupled/2);
1128  Int_t indx, indx1, indx2, indx3, nTot = 0;
1129  Double_t *coupl1 = 0, *coupl2 = 0, *coupl3 = 0;
1130 
1131  for (Int_t i123 = 1; i123 <= i123max; ++i123) {
1132 
1133  if (i123 == 1) {
1134  coupl1 = new Double_t [nCoupled];
1135  for (Int_t i = 0; i < nCoupled; ++i) coupl1[i] = 0;
1136  }
1137  else if (i123 == 2) {
1138  nTot = nCoupled*nCoupled;
1139  coupl2 = new Double_t [nTot];
1140  for (Int_t i = 0; i < nTot; ++i) coupl2[i] = 9999;
1141  } else {
1142  nTot = nTot*nCoupled;
1143  coupl3 = new Double_t [nTot];
1144  for (Int_t i = 0; i < nTot; ++i) coupl3[i] = 9999;
1145  } // else
1146 
1147  for (Int_t i = 0; i < nCoupled; ++i) {
1148  indx1 = clustNumb[i];
1149  for (Int_t j = i+1; j < nCoupled; ++j) {
1150  indx2 = clustNumb[j];
1151  if (i123 == 1) {
1152  coupl1[i] += aijcluclu(indx1,indx2);
1153  coupl1[j] += aijcluclu(indx1,indx2);
1154  }
1155  else if (i123 == 2) {
1156  indx = i*nCoupled + j;
1157  coupl2[indx] = coupl1[i] + coupl1[j];
1158  coupl2[indx] -= 2 * (aijcluclu(indx1,indx2));
1159  } else {
1160  for (Int_t k = j+1; k < nCoupled; ++k) {
1161  indx3 = clustNumb[k];
1162  indx = i*nCoupled*nCoupled + j*nCoupled + k;
1163  coupl3[indx] = coupl2[i*nCoupled+j] + coupl1[k];
1164  coupl3[indx] -= 2 * (aijcluclu(indx1,indx3)+aijcluclu(indx2,indx3));
1165  }
1166  } // else
1167  } // for (Int_t j=i+1;
1168  } // for (Int_t i=0;
1169  } // for (Int_t i123=1;
1170 
1171  // Find minimum coupling
1172  Double_t couplMin = 9999;
1173  Int_t locMin = 0;
1174 
1175  for (Int_t i123 = 1; i123 <= i123max; ++i123) {
1176  if (i123 == 1) {
1177  locMin = TMath::LocMin(nCoupled, coupl1);
1178  couplMin = coupl1[locMin];
1179  minGroup[0] = locMin;
1180  delete [] coupl1;
1181  }
1182  else if (i123 == 2) {
1183  locMin = TMath::LocMin(nCoupled*nCoupled, coupl2);
1184  if (coupl2[locMin] < couplMin) {
1185  couplMin = coupl2[locMin];
1186  minGroup[0] = locMin/nCoupled;
1187  minGroup[1] = locMin%nCoupled;
1188  }
1189  delete [] coupl2;
1190  } else {
1191  locMin = TMath::LocMin(nTot, coupl3);
1192  if (coupl3[locMin] < couplMin) {
1193  couplMin = coupl3[locMin];
1194  minGroup[0] = locMin/nCoupled/nCoupled;
1195  minGroup[1] = locMin%(nCoupled*nCoupled)/nCoupled;
1196  minGroup[2] = locMin%nCoupled;
1197  }
1198  delete [] coupl3;
1199  } // else
1200  } // for (Int_t i123=1;
1201  return couplMin;
1202 }
1203 
1204 //_____________________________________________________________________________
1205 Int_t
1207  Int_t nCoupled, Int_t nForFit,
1208  const Int_t *clustNumb, const Int_t *clustFit,
1209  const TMatrixD& aijclupad)
1210 {
1213 
1214  Int_t npad = cluster.Multiplicity();
1215  Double_t *padpix = 0;
1216 
1217  if (nCoupled > 3)
1218  {
1219  padpix = new Double_t[npad];
1220  for (Int_t i = 0; i < npad; ++i) padpix[i] = 0.;
1221  }
1222 
1223  Int_t nOK = 0, indx, indx1;
1224  for (Int_t iclust = 0; iclust < nForFit; ++iclust)
1225  {
1226  indx = clustFit[iclust];
1227  for (Int_t j = 0; j < npad; ++j)
1228  {
1229  if ( aijclupad(indx,j) < fgkCouplMin) continue;
1230  AliMUONPad* pad = cluster.Pad(j);
1231  /*
1232  if ( pad->Status() == -5 ) pad->SetStatus(-9); // flag overflow
1233  if ( pad->Status() < 0 ) continue; // exclude overflows and used pads
1234  if ( !pad->Status() )
1235  {
1236  pad->SetStatus(1);
1237  ++nOK; // pad to be used in fit
1238  }
1239  */
1241  || pad->IsSaturated() ) continue; // used pads and overflows
1243  ++nOK; // pad to be used in fit
1244 
1245  if (nCoupled > 3)
1246  {
1247  // Check other clusters
1248  for (Int_t iclust1 = 0; iclust1 < nCoupled; ++iclust1)
1249  {
1250  indx1 = clustNumb[iclust1];
1251  if (indx1 < 0) continue;
1252  if ( aijclupad(indx1,j) < fgkCouplMin ) continue;
1253  padpix[j] += aijclupad(indx1,j);
1254  }
1255  } // if (nCoupled > 3)
1256  } // for (Int_t j=0; j<npad;
1257  } // for (Int_t iclust=0; iclust<nForFit
1258  if (nCoupled < 4) return nOK;
1259 
1260  Double_t aaa = 0;
1261  for (Int_t j = 0; j < npad; ++j)
1262  {
1263  if (padpix[j] < fgkCouplMin) continue;
1264  aaa += padpix[j];
1265  //cluster.Pad(j)->SetStatus(-1); // exclude pads with strong coupling to the other clusters
1266  cluster.Pad(j)->SetStatus(AliMUONClusterFinderMLEM::GetCoupledFlag()); // exclude pads with strong coupling to the other clusters
1267  nOK--;
1268  }
1269  delete [] padpix;
1270  return nOK;
1271 }
1272 
1273 //_____________________________________________________________________________
1274 void
1276  Int_t /*nfit*/, Double_t *par)
1277 {
1279 
1280  Int_t indx, mult = cluster.Multiplicity(), iend = fNpar/3;
1281  Double_t charge, coef=0;
1282 
1283  for (Int_t j = 0; j < mult; ++j)
1284  {
1285  AliMUONPad* pad = cluster.Pad(j);
1286  //if ( pad->Status() != -1 ) continue;
1287  if ( pad->Status() != AliMUONClusterFinderMLEM::GetCoupledFlag() ) continue;
1288  if (fNpar != 0)
1289  {
1290  charge = 0;
1291  for (Int_t i = 0; i <= iend; ++i)
1292  {
1293  // sum over hits
1294  indx = 3 * i;
1295  coef = Param2Coef(i, coef, par);
1296  charge += ChargeIntegration(par[indx],par[indx+1],*pad) * coef;
1297  }
1298  charge *= fQtot;
1299  pad->SetCharge(pad->Charge()-charge);
1300  } // if (fNpar != 0)
1301 
1302  //if (pad->Charge() > 6 /*fgkZeroSuppression*/) pad->SetStatus(0);
1304  // return pad for further using // FIXME: remove usage of zerosuppression here
1305  else pad->SetStatus(AliMUONClusterFinderMLEM::GetOverFlag()); // do not use anymore
1306 
1307  } // for (Int_t j=0;
1308 }
1309 
1310 
static AliMq::Station12Type GetStation12Type(Int_t detElemId)
void Merge(const AliMUONCluster &cluster, Int_t nForFit, Int_t nCoupled, const Int_t *clustNumb, const Int_t *clustFit, TObjArray **clusters, TMatrixD &aijcluclu, TMatrixD &aijclupad)
Bool_t IsReal() const
Return info whether this is a real pad or a virtual one.
Definition: AliMUONPad.h:64
Double_t fLowestPadCharge
! minimum allowed pad charge
void SetStatus(Int_t status)
Set status word.
Definition: AliMUONPad.h:104
void Fcn1(const AliMUONCluster &cluster, Int_t &npar, Double_t *gin, Double_t &f, Double_t *par, Int_t iflag)
static Float_t Pitch()
Return wire pitch.
Double_t fLowestClusterCharge
! minimum allowed cluster charge
Double_t MinGroupCoupl(Int_t nCoupled, const Int_t *clustNumb, const TMatrixD &aijcluclu, Int_t *minGroup)
Bool_t IsSaturated() const
Return info whether this pad is saturated or not.
Definition: AliMUONPad.h:67
Float_t IntXY(Float_t xi1, Float_t yi1, Float_t xi2, Float_t yi2) const
Charge integration on region (x1,y1,x2,y2).
#define TObjArray
static Int_t GetCoupledFlag()
Return coupled pad flag.
TObject * BinToPix(TH2 *mlem, Int_t jc, Int_t ic)
A group of adjacent pads.
static Float_t SqrtKy3St1()
Return SqrtKy3 for Station 1 & 2.
static Float_t SqrtKx3()
Return SqrtKx3 for Slat.
TFile f("CalibObjects.root")
static Int_t GetUseForFitFlag()
Return should be used for fit flag.
Implementation of Mathieson response.
TVector2 Dimensions() const
Return half dimensions in x and y (cm)
Definition: AliMUONPad.h:56
void Split(const AliMUONCluster &cluster, TH2 *mlem, Double_t *coef, TObjArray &clusterList)
Splitter class for the MLEM algorithm.
Int_t Multiplicity() const
void SetPosition(const TVector2 &pos, const TVector2 &errorOnPos)
Set (x,y) of that cluster and errors.
Int_t fNpar
! number of fit parameters
static Float_t PitchSt1()
Return wire pitch for Station 1 & 2.
static Float_t SqrtKy3()
Return SqrtKy3 for Slat.
ClassImp(TPCGenInfo)
Definition: AliTPCCmpNG.C:254
void AddBin(TH2 *mlem, Int_t ic, Int_t jc, Int_t mode, Bool_t *used, TObjArray *pix)
static Float_t SqrtKx3St1()
Return SqrtKx3 for Station 1 & 2.
static Int_t GetOverFlag()
Return processing is over flag.
void SetCharge(Double_t charge)
Set charge.
Definition: AliMUONPad.h:96
Double_t chi2
Definition: AnalyzeLaser.C:7
static Int_t GetZeroFlag()
Return pad "basic" state flag.
Int_t SelectPad(const AliMUONCluster &cluster, Int_t nCoupled, Int_t nForFit, const Int_t *clustNumb, const Int_t *clustFit, const TMatrixD &aijclupad)
static const Double_t fgkCouplMin
threshold on coupling
void SetPitch(Float_t p1)
void SetCharge(Float_t chargeCath0, Float_t chargeCath1)
Set cathode (re)computed charges.
Double_t Param2Coef(Int_t icand, Double_t coef, Double_t *par) const
void UpdatePads(const AliMUONCluster &cluster, Int_t nfit, Double_t *par)
static Int_t GetModifiedFlag()
Return modified pad charge flag.
TVector2 Position() const
Return (x,y) of that cluster.
void AddCluster(Int_t ic, Int_t nclust, TMatrixD &aijcluclu, Bool_t *used, Int_t *clustNumb, Int_t &nCoupled)
void SetChi2(Float_t chi2)
Set chi2 of the RawCharge fit.
TVector2 Position() const
Return positions in x and y (cm)
Definition: AliMUONPad.h:85
Float_t Charge() const
Long_t NofPads(Int_t cathode, Int_t statusMask, Bool_t matchMask) const
Compute number of pads in X and Y direction for a given cathode.
AliMUONMathieson * fMathieson
! Mathieson
Int_t PairFirst(MpPair_t pair)
Decode the first integer from encoded pair.
Double_t Charge() const
Return pad charge.
Definition: AliMUONPad.h:48
Int_t Fit(const AliMUONCluster &cluster, Int_t iSimple, Int_t nfit, const Int_t *clustFit, TObjArray **clusters, Double_t *parOk, TObjArray &clusterList, TH2 *mlem)
Double_t Coord(Int_t ixy) const
Definition: AliMUONPad.cxx:354
Double_t fLowestPixelCharge
! minimum allowed pixel charge
Float_t ChargeIntegration(Double_t x, Double_t y, const AliMUONPad &pad)
Int_t PairSecond(MpPair_t pair)
Decode the second integer from encoded pair.
Int_t Status() const
Return status word.
Definition: AliMUONPad.h:123
AliMUONPad * Pad(Int_t index) const
Combination of digit and mppad informations.
Definition: AliMUONPad.h:25
Int_t fnCoupled
! number of coupled pixels ?
Int_t fDetElemId
! detection element we are working on